This page is hosted for free by zzz.com.ua, if you are owner of this page, you can remove this message and gain access to many additional features by upgrading your hosting to PRO or VIP for just 32.50 UAH.
Do you want to support owner of this site? Click here and donate to his account some amount, he will be able to use it to pay for any of our services, including removing this ad.

Незалежні коцикли зв’язного графа (базис у просторі коциклів)

Ця сторінка призначена для студентів, що вивчають курс дискретної математики та (або) теорії графів. Безпосередньо з неї ви можете виконати своє ІДЗ, навіть якщо у вас немає на комп’ютері MATLAB. Якщо ж у вас є MATLAB, перейдіть на цю сторінку: там у вас є можливість втрутитися у сценарій (програму) обчислень. А на цій сторінці задача про знаходження базису у комбінаторному просторі цмклів розв’язується за допомогою такого алгоритму.

Для правильної роботи з цією сторінкою ваш браузер повинен підтримувати сценарії Java Script. Увімкніть їх.

Видаліть зі свого графа петлі: вони не впливають на ейлеровість графа. Якщо є кратні ребра, вставте в них додаткові вершини, щоб вони не зливалися на малюнку (ребра малюються відрізками прямих). Введіть вхідні дані в області введення нижче. У першій області треба (точніше, можна) ввести координати вершин для малювання графа. Вони задаються у вигляді матриці n×2: у першому стовпці − x координати, у другому − y-і. Числа можна задавати цілі, з десятичною точкою або в експоненційній формі. Числа розділяйте пробілами. Загальна кількість рядків у цій області введення визначає розмір графа n − кількість вершин. Ці вхідні дані (координати вершин) не є обов’язковими: якщо їх не задати, то граф буде малюватися у вигляді правильного n-кутника, а кількість вершин буде визначатися максимальним номером вершини у наступній області введення.

Наступна область введення − обов’язкова для заповнення. В ній визначається структура графа. Кожне ребро у графі поєднує дві вершини. Номери цих вершин задаються у вигляді матриці m×2 у цій області введення. Яку вершину вважати першою, а яку другою − не має значення. У цих стовпцях повинні бути натуральні числа від 1 до n включно. Числа розділяйте пробілами. Загальна кількість чисел у кожному з цих стовпців визначає потужність графа m − кількість ребер.

Координати вершин
x   (пробіл)   y

Ребра
v1  (пробіл)  v2